Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.03.474825

ABSTRACT

The SARS-CoV-2 Omicron Variant of Concern (B.1.1.529) has spread rapidly in many countries. With a spike that is highly diverged from that of the pandemic founder, it escapes most available monoclonal antibody therapeutics and erodes vaccine protection. A public class of IGHV3-53-using SARS-CoV-2 neutralizing antibodies typically fails to neutralize variants carrying mutations in the receptor-binding motif, including Omicron. As antibodies from this class are likely elicited in most people following SARS-CoV-2 infection or vaccination, their subsequent affinity maturation is of particular interest. Here, we isolated IGHV3-53-using antibodies from an individual seven months after infection and identified several antibodies capable of broad and potent SARS-CoV-2 neutralization, extending to Omicron without loss of potency. By introducing select somatic hypermutations into a germline-reverted form of one such antibody, CAB-A17, we demonstrate the potential for commonly elicited antibodies to develop broad cross-neutralization through affinity maturation. Further, we resolved the structure of CAB-A17 Fab in complex with Omicron spike at an overall resolution of 2.6 angstroms by cryo-electron microscopy and defined the structural basis for this breadth. Thus, public SARS-CoV-2 neutralizing antibodies can, without modified spike vaccines, mature to cross-neutralize exceptionally antigenically diverged SARS-CoV-2 variants.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.01.20205096

ABSTRACT

ObjectivesThe four seasonal coronaviruses 229E, NL63, OC43, and HKU1 are frequent causes of respiratory infections and show annual and seasonal variation. Increased understanding about these patterns could be informative about the epidemiology of SARS-CoV-2. MethodsResults from PCR diagnostics for the seasonal coronaviruses, and other respiratory viruses, were obtained for 55,190 clinical samples analysed at the Karolinska University Hospital, Stockholm, Sweden, between 14 September 2009 and 2 April 2020. ResultsSeasonal coronaviruses were detected in 2,130 samples (3.9%) and constituted 8.1% of all virus detections. OC43 was most commonly detected (28.4% of detections), followed by NL63 (24.0%), HKU1 (17.6%), and 229E (15.3%). The overall fraction of positive samples was similar between seasons, but at species level there were distinct biennial alternating peak seasons for the Alphacoronaviruses, 229E and NL63, and the Betacoronaviruses, OC43 and HKU1, respectively. The Betacoronaviruses peaked earlier in the winter season (Dec-Jan) than the Alphacoronaviruses (Feb-Mar). Coronaviruses were detected across all ages, but diagnostics were more frequently requested for paediatric patients than adults and the elderly. OC43 and 229E incidence was relatively constant across age strata, while that of NL63 and HKU1 decreased with age. ConclusionsBoth the Alphacoronaviruses and Betacoronaviruses showed alternating biennial winter incidence peaks, which suggests some type of immune mediated interaction. Symptomatic reinfections in adults and the elderly appear relatively common. Both findings may be of relevance for the epidemiology of SARS-CoV-2.

3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.02.13.20022806

ABSTRACT

A novel coronavirus (SARS-CoV-2) first detected in Wuhan, China, has spread rapidly since December 2019, causing more than 80,000 confirmed infections and 2,700 fatalities (as of Feb 27, 2020). Imported cases and transmission clusters of various sizes have been reported globally suggesting a pandemic is likely. Here, we explore how seasonal variation in transmissibility could modulate a SARS-CoV-2 pandemic. Data from routine diagnostics show a strong and consistent seasonal variation of the four endemic coronaviruses (229E, HKU1, NL63, OC43) and we parameterize our model for SARS-CoV-2 using these data. The model allows for many subpopulations of different size with variable parameters. Simulations of different scenarios show that plausible parameters result in a small peak in early 2020 in temperate regions of the Northern Hemisphere and a larger peak in winter 2020/2021. Variation in transmission and migration rates can result in substantial variation in prevalence between regions. While the uncertainty in parameters is large, the scenarios we explore show that transient reductions in the incidence rate might be due to a combination of seasonal variation and infection control efforts but do not necessarily mean the epidemic is contained. Seasonal forcing on SARS-CoV-2 should thus be taken into account in the further monitoring of the global transmission. The likely aggregated effect of seasonal variation, infection control measures and transmission rate variation is a prolonged pandemic wave with lower prevalence at any given time, thereby providing a window of opportunity for better preparation of health care systems.

SELECTION OF CITATIONS
SEARCH DETAIL